Normative Conflict Detection for e-Contracts

Georgios K. Giannikis & Aspassia Daskalopulu

Department of Computer and Communications Engineering, University of Thessaly, Gklavani 37, 38221 Volos, Greece {ggiannik,aspassia}@inf.uth.gr

Abstract. This paper is concerned with normative conflicts that arise for agents engaging in electronic contracting, and presents a set of primitive conflict patterns. We examine other analyses of normative conflicts and show how these may be seen as instances of these primitives. We also identify some patterns of normative conflict that have not been identified in other proposals. Finally, we propose a representation of e-contracts in Default Logic, which facilitates the detection and resolution of such normative conflicts.

Keywords: Conflict Patterns, Conflict Detection, E-contracts, Default Logic

1 Introduction

The analysis, representation and management of normative conflicts has been the focus of much research in recent years, from a variety of perspectives, such as distributed systems management, legal reasoning and argumentation, and multi-agent interaction.

In the early nineties, Sartor's [25] and Horty's [12] work on normative conflicts set the theoretical basis for conflict management. According to Sartor [25] a conflict arises when "(possibly) valid norms establish incompatible qualifications for the same concrete state". The corner stone in this approach is a norm set. This may be either inconsistent, if a contradiction is logically derivable from it, or potentially inconsistent, if it may lead to contradiction in an upcoming state. In similar spirit Horty in [12, 13] addresses moral conflicts: an agent is in moral conflict if it ought to do an action A and, at the same time, it ought to do another action B, but it is impossible to do both. Moffett et al. [21], Lupu et al. [18] and Dunlop et al. [7, 8] address conflicts from the Distributed Systems Management viewpoint and view policies as a way to determine and influence management behaviour. Cholvy et al. [4, 5] view normative conflicts as the result of role conflict and propose a solution based on hierarchies of roles. Broersen et al. [3] deal with conflicts that arise between an agent's mental attributes such as beliefs, obligations, intensions and desires. Kowalski [16] considers normative conflicts that arise as a result of conflicting goals and presents an approach

¹ This work was supported by the European Commission and the Greek Secretariat for Research and Technology (PENED 2003 – 03ΕΔ466).

that unifies logic and decision theory. Finally, Kollingbaum et al. [15] focus on practical reasoning agents and use instantiation graphs to detect conflicts.

In this work we are concerned with normative conflicts that arise for agents engaging in electronic contracting, within an electronic marketplace, and we investigate an alternative representation, in which we use Reiter's Default Logic (DfL) [23]. In [9, 10] we proposed the representation of contractual norms as default rules, which are constructed dynamically from temporal representations. The resulting default theories afford us both temporal and defeasible reasoning, as well as facilitating conflict resolution [9]. Here, we identify a set of primitive patterns for normative conflicts and show how the conflicts identified by other researchers may be seen as instances of these primitives. We also identify some patterns of normative conflict that have not been identified in other proposals.

2 Conflict Detection

For the purposes of illustration consider an electronic marketplace, populated by software agents that establish and perform e-contracts on behalf of some real world parties. Let the set Agents-{Agent1, Agent2, Agent3,.....} denote distinct identifiers for the various agents, and the set Roles={RA, WA, MA, CA, ...} denote distinct roles that agents may assume in the e-market (where RA, WA, MA, CA denote retailer, wholesaler, mediator and carrier respectively).

Consider a two-party business transaction. Agent1 that acts as a retailer orders some goods from the wholesaler Agent3. The terms of the agreement between these two agents are: Agent3 should see to it that the goods be delivered to Agent1 within 10 days from commencement (e.g., the date that the order takes place). Agent1, in turn, should see to it that payment be made within 21 days from the date it receives the goods. If Agent3 does not deliver on time, then a fixed amount is to be deducted from the original price of the goods for each day of delay and it should see to it that delivery be made by a new deadline. If Agent1 does not perform payment on time, then a fixed amount is to be added to the original price of the goods for each day of delay and it should see to it that payment be made by a new deadline.

Following [6], we may take an informal, process view of the business transaction that is regulated by the agreement. Each state offers a (possibly partial) description of the factual and normative propositions that hold true. A transition between states corresponds to an event that takes place, i.e. an action that one of the parties performs or omits to perform. Normative propositions of the form:

NN(agent1, role1, action, agent2, role2)

express that agent1 that acts as role1 is in legal relation NN towards agent2 that acts as role2 to perform action, where NN may be Obligation, Prohibition, Permission and legal Power.

We use Reiter's Default Logic [23] to represent the norms of an agreement as default rules. A default rule has the form $P:J_1,J_2,...J_n/C$, where P is the prerequisite, $J=\{J_1,J_2,...J_n\}$ is a set of justifications and C is the derived consequent. If J coincides with C, the default rule is called normal. The semantics of a default rule is: If P holds and the assumption J is consistent with our current knowledge, then C may be inferred.

For instance, the following default rule expresses that if an order from Agent1 (acting as a retailer) towards Agent3 (acting as a wholesaler) holds, and it is consistent to assume that Agent1 will become a regular client, then we may infer that Agent3 is legally obliged towards Agent1 to perform delivery:

Order(Agent1, RA, Agent3, WA): BecomeRegularClient(Agent1)
Obligation(Agent3, WA, Delivery, Agent1, RA)

A Default Theory (DfT) is a pair of the form (W, D), where W is a set of closed formulae that hold, and D is a set of defaults. Rules may be used to compute extensions E of the default theory. A rule is applicable to a set of formulae $w \subseteq E$ if and only if $P \in E$ and $\neg J_1, ..., \neg J_n \notin E$. We consider grounded DfTs and we derive extensions in the manner presented in [2], i.e. by maintaining consistent sets of formulae. This derivation may be conducted in stepwise manner. Thus, an agent that engages in a transaction governed by some agreement, essentially reasons with a default theory. At each time point during the business transaction the agent attempts to compute the extensions of its current DfT. Note that whenever multiple extensions are computed for a Default Theory these represent possible world views. Depending on its chosen action an agent is committed to a particular extension. The DfT contract representation allows us to detect normative conflicts by examining extensions. A normative conflict may be detected either between multiple extensions or between some extension and the current knowledge (w) of the agent. Where a conflict is detected between multiple extensions, the latter represent alternative futures for the agent; let us call these interextension conflicts. Where a conflict is detected between an extension and the current knowledge of the agent, it represents a state in which some normative violation will eventually occur; let us call these intra-extension conflicts. The role of conflict detection is, thus, to assist an agent to choose a course of action so that normative violations may be predicted and avoided.

The first step of conflict management involves the detection of conflicts. To this end, in section 2.1, we identify primitive patterns of normative conflict that may be spotted during the derivation of extensions of the default theory representation of an agreement. In section 2.2 we discuss other analyses of normative conflicts and show how these may be seen as instances of the primitive patterns. In section 2.3 we identify additional cases of normative conflict which are not discussed already in the existing literature.

2.1 Primitive Patterns of Normative Conflicts

In what follows we use Obligation, Permission, Prohibition and Power as predicates that express normative relations between agents. We do not employ the axiomatization of any particular system of Deontic logic; specifically, we do not employ the axiomatization of Standard Deontic Logic (SDL), in which these notions are modeled as operators that are inter-defined. This is because in Standard Deontic Logic (and any system where the D² scheme is valid) it is not possible for an agent to bear conflicting

 $^{^2}$ $\neg O \bot$ where O denotes obligation

obligations because of the D scheme. Yet, in most realistic situations, indeed in our everyday life, agents do find themselves in normative conflict. Moreover, if we were to employ SDL, permission, obligation and prohibition would be interdefined, and so all of the patterns we present in this section (section 2.1) would be reduced to three of all six patterns (we explain this in detail in the appendix); thus the representation would be less distinguishing.

A. Conflict between a normative notion (NN) and its negation. The general pattern is:

NN(agent1, role1, action, agent2, role2)

NN(agent1, role1, action, agent2, role2)

This is the common syntactical conflict that arises when an agent has contradictory knowledge. All other approaches, without any exception, refer to this type of conflict. In policy-based approaches, when the normative notion is *Obligation* it is called *positive-negative conflict of modalities* [21]. This type of conflict never actually arises in our representation, where norms are represented as defaults, because the derivation of extensions preserves consistency. It may, however, be identified as a potential conflict, when multiple extensions are computed.

B. Conflict between the prohibition to perform an action and the simultaneous permission or obligation to perform the same action. Once again, all previous research approaches refer to this type of conflict. In [21] and [18] these conflicts are called *conflicts between authority policies* (sub-pattern B1: Prohibition vs Permission) and *conflict between authority and imperatival policies* (sub-pattern B2: Prohibition vs Obligation) respectively.

Consider, for instance, the following default theory (W, D) where: W={Order(Agent1, RA, Agent3, WA)} and D=(

Order(Agent1, RA, Agent3, WA): WellKnownDebtor(Agent1)

Prohibition(Agent3, WA, Delivery, Agent1, RA)

Order(Agent1, RA, Agent3, WA): Permission(Agent3, WA, Delivery, Agent1, RA)

Permission(Agent3, WA, Delivery, Agent1, RA)

The first default denotes that if an order from Agent1 (acting as retailer) towards Agent3 (acting as wholesaler) holds, and it is consistent to assume that Agent1 is related to a well known debtor then we may infer that Agent3 is prohibited to perform delivery. Similarly, the second default expresses that if an order from Agent1 towards Agent3 holds, and it is consistent to assume that Agent3 is permitted to perform delivery, then we may infer that Agent3 is permitted to perform delivery towards Agent1. Agent3 may find itself in a conflicting state after applying the two defaults sequentially. We denote this type of conflict as B1. Note that special terms, such as WellKnownDebtor(agent), BecomeRegularClient(agent) or IsRegularClient(agent) among others, are used only for the purposes of illustration and are not binding to the characterization of domain-independent conflict patterns.

In the same spirit, let us replace the second default shown above with the following:

Order(Agent1, RA, Agent3, WA): Obligation(Agent3, WA, Delivery, Agent1, RA)
Obligation(Agent3, WA, Delivery, Agent1, RA)

Once again Agents is in conflict. We denote this conflict between Prohibition and Obligation as B2.

C. Conflict between an obligation to perform action and the simultaneous obligation or permission to perform raction. Here raction denotes a negative action, and the issue of representing negative actions has concerned researchers (e.g. [24] regards them as actions that do not lead to the successful fulfillment of a norm). We have not developed special semantics for the representation of negative actions; we merely regard such expressions as denoting either performance of some action other than the negative one, or as idleness (non performance of any action). This case arises, also, in Lee [17] and Abrahams [1] who use the term waive.

For example consider the following DfT where: W={Order(Agent1, RA, Agent3, WA)}

and D={

Order(Agent1, RA, Agent3, WA) : BecomeRegularClient(Agent1)

Obligation(Agent3, WA, Delivery, Agent1, RA)

Order(Agent1, RA, Agent3, WA) : WellKnownDebtor(Agent1)
Obligation(Agent3, WA, ¬Delivery, Agent1, RA)

D. Conflict between the power to perform an action and the simultaneous prohibition to perform the same action. This type of conflict is also noted in [1].
 For instance consider the following DfT: W={Order(Agent1, RA, Agent3, WA)}

W={Order(Agent1, RA, Agent3, WA)} and D={

Order(Agent1, RA, Agent3, WA) : Power(Agent3, WA, Delivery, Agent1, RA)

Power(Agent3, WA, Delivery, Agent1, RA)

Order(Agent1, RA, Agent3, WA) : WellKnownDebtor(Agent1)

Prohibition(Agent3, WA, Delivery, Agent1, RA)

One may argue that in this case there is no conflict and, consequently, that there is no need for conflict resolution. Indeed, legal power to perform an action goes hand-in-hand with permission to exercise it, according to formal definitions of institutional power ([19, 14]). Hence, there is a conflict here, albeit some may perceive it as a conflict between permission and prohibition to exercise a certain power.

E. Conflict between two obligatory distinct actions, when it is impossible to do both at the same time. This corresponds to Horty's moral dilemma [12].

For instance consider the following DfT where:

W={Order(Agent1, RA, Agent3, WA), Order(Agent2, RA, Agent3, WA),

no simultaneous performance of actions is possible} and D=(

Order(Agent1, RA, Agent3, WA) : BecomeRegularClient(Agent1)
Obligation(Agent3, WA, Delivery1, Agent1, RA)

Order(Agent2, RA, Agent3, WA, T1) : IsRegularClient(Agent1)
Obligation(Agent3, WA, Delivery2, Agent2, RA)

Agent3 bears two obligations that cannot be simultaneously satisfied.

F. Conflict between an obligation and the negation of the agent's permission or power to perform it. The negation of an agent's permission/power to perform an action may be explicitly derived from the agent's knowledge base (sub-pattern F1) or it may be derived from a possibly incomplete knowledge base, through the absence of explicit information (sub-pattern F2).

For instance consider the following default theory where:

W={Order(Agent1, RA, Agent3, WA)} and D=t

166

Order(Agent1, RA, Agent3, WA): BecomeRegularClient(Agent1)

Obligation(Agent3, WA, Delivery, Agent1, RA)

Order(Agent1, RA, Agent3, WA): WellKnownDebtor(Agent1)

¬Permission(Agent3, WA, Delivery, Agent1, RA)

Now consider a DfT that contains the first of the defaults above and in place of the second, the following:

Order(Agent1, RA, Agent3, WA): ¬Permission(Agent3, WA, Delivery, Agent1, RA)
¬Permission(Agent3, WA, Delivery, Agent1, RA)

If the agent's knowledge base does not contain an explicit permission, then the justification of this default will be satisfied, and hence its conclusion will be drawn.

2.2 Other Analyses of Normative Conflicts

In this section we review some of the main ideas that other researchers have proposed in their analyses of normative conflict and discuss how these may be regarded as instantiations of the primitive patterns presented in the previous section. Although all the patterns discussed in this section may be regarded as special cases of the primitive patterns we introduced, they merit a separate discussion because they contain additional information that may be useful for efficient conflict resolution. We do not show the entire DfT, where it is clear that the conflicting norms arise as a result of distinct default rules.

2.2.1 Policy-based Conflicts

<u>Intra-policy conflicts</u>. Dunlop *et al.* [7] refer to an *internal policy conflict*, when contradictory policies are assigned to a single role. A policy in their approach corresponds to what we call a single norm.

Consider, for example, the two distinct obligations of Agents (a wholesaler) to perform delivery towards two distinct retailers (Agent1 and Agent2).

Obligation(Agent3, WA, Delivery1, Agent1, RA) Obligation(Agent3, WA, Delivery2, Agent2, RA)

The conflict arises from the fact that contradictory policies are assigned to Agent3 when acting as wholesaler. Apparently, this specific case can be mapped onto pattern

167

E. In the same manner, other examples of this kind may be seen as instances of other primitive patterns.

<u>Inter-policy conflicts</u>. Dunlop *et al.* [7] refer to an *external policy conflict*, when an agent simultaneously assumes different roles that contradict "in co-existence".

Consider, for example, that when Agent3 acts as a wholesaler it is obliged to perform delivery towards Agent1 while when it acts as a mediator it is prohibited to perform the same action.

Obligation(Agent3, WA, Delivery, Agent1, RA) Prohibition(Agent3, MA, Delivery, Agent1, RA)

This specific example can be mapped onto pattern B2.

2.2.2 Role-based Conflicts

Intra-role conflicts. Cholvy et al. [4], consider conflicts only among different roles. In their approach a role is defined through a set of consistent norms. We believe that for a variety of applications it is not realistic to insist on consistent role definitions, and thus we accept intra-role conflicts. Typical examples of this kind of conflict are authority conflicts [21] and conflicts that are related with the notion of power.

Consider the case where Agents who acts as a wholesaler is both permitted and prohibited to perform delivery towards the retailer Agents. This inconsistency may arise depending on the assumptions that are made, such as the ones presented earlier on the relation of the retailer with a well known debtor.

Permission(Agent3, WA, Delivery, Agent1, RA) Prohibition(Agent3, WA, Delivery, Agent1, RA)

Apparently, this case can be mapped onto pattern B1.

<u>Inter-role conflicts</u>. Cholvy *et al.* [4] and Dunlop *et al.* [7] identify an inter-role conflict when contradictory norms arise as a result of multiple roles being assigned to an agent.

For example, when Agent3 acts as a carrier it is obligatory to perform delivery. If, at the same time, the same agent assumes the role of wholesaler, then such delivery is not obligatory.

Obligation(Agent3, CA, Delivery, Agent1, RA)
¬Obligation(Agent3, WA, Delivery, Agent1, RA)

This case can be mapped onto pattern A.

Obviously intra-policy and intra-role conflict patterns, as well as inter-policy and inter-role conflict patterns are conceptually related. The respective authors use the terms "policy" and "role" differently, and the only reason for discussing them separately is to facilitate comparison.

2.2.3 Conflicts related to Interest/Duty

<u>Conflicts of interest</u>. Moffett *et al.* in [21] define *conflicts of interest* as the situation where "the same subject can perform management tasks on two different sets of targets". This type of conflict can be seen as an instance of the inter-role conflict or the inter-policy conflict or the primitive E (conflict between two obligations).

Conflicts of Duty. Moffett et al. in [21] and later Lupu et al. in [18] define conflicts of duties and application specific conflicts respectively. They refer to situations where the same agent should not be allowed to perform two distinct actions (e.g. the same agent should not be allowed both to enter a payment and to sign the payment

cheque). Such conflicts may be seen as instances of the inter-role conflict or the inter-policy conflict or the primitive E (conflict between two obligations).

2.2.4 Exceptions

This type of conflict arises generally in norm-governed systems. As Sartor [25] notes such conflicts emerge when "exceptions to norms state that particular norms, unam-

biguously identified, do not apply in a given situation".

Consider the following DfT where the retailer Agent1 who holds a discount card orders goods from the wholesaler Agent3. Based on the first default the retailer gets a 10% discount due to the discount card. On the other hand, based on the second default the retailer should get a 20% discount because it places an order during the sales period. The described conflict is of type E:

Obligation(Agent3, WA, Discount10%, Agent1, RA) Obligation(Agent3, WA, Discount20%, Agent1, RA)

2.2.5 Temporal Normative Conflicts

Dunlop et al. [7] present a temporal logic based approach for the detection of normative conflicts. In this section we present briefly a modification of our representation of normative relations in DfL, which takes into account the external time of a norm (i.e. the time at which it comes into force) and the internal time of a norm (i.e. the time stipulated for its satisfaction, its deadline) (cf. [20]). A formula of the form:

NN(agent1, role1, action, time2, agent2, role2, time1)

denotes that at time point time1 agent1 (acting as role1) is in legal relation NN towards agent2 (acting as role2) to perform action by time2.

Now, we may discuss normative conflicts of the types described by the primitive patterns B-F, in a temporal setting. For the purposes of illustration consider the primitive pattern E, in which the following norms are in conflict:

Obligation(Agent3, WA, Delivery, IT1, Agent1, RA, ET1) Obligation(Agent3, WA, Delivery, IT2, Agent2, RA, ET2)

where 171, and E71 are the internal/external time points for the first norm, and 172, E72 are the internal/external time points for the second norm. Temporally well formed norms are those whose internal time is subsequent to their external time, so each normative proposition corresponds to an interval; the intervals for the example we use here are $\Delta 71=[E71, 171]$ and $\Delta 72=[E72, 172]$.

A conflict arises in the following situations:

- (i) ET1 = ET2 and IT1 = IT2: when $\Delta T1$ coincides with $\Delta T2$.
- (ii) $ET1 \le ET2 < IT2 \le IT1$: when $\Delta T1$ fully overlaps $\Delta T2$.
- (iii) ET1 < ET2 < IT1 < IT2: when $\Delta T1$ partially overlaps $\Delta T2$.
- (iv) IT1 = ET2: when $\Delta T1$ meets $\Delta T2$. This conflict holds only at time point IT1 = ET2. Note that for completeness, one should also consider the symmetrical cases.

2.3 Additional Patterns

Here are some additional cases of normative conflict that we have identified, which are not discussed already in the existing literature. We mention them separately be-

cause, although they may be reduced to the primitive patterns, there is additional information that may be exploited to facilitate conflict resolution.

Type of action-based conflicts. A common feature of e-contracts is the so called Contrary-to-Duty structures [22]. An agent's contractual obligations may be divided in two types. Prima facie obligations that concern the performance of actions that are in principle stipulated by the agreement and secondary obligations that concern the performance of reparatory actions; the latter apply only when violations of prima facie obligations happen.

An agent may, thus, bear two distinct obligations (for instance of the kind described by E), where one is primary and the other is secondary. This qualification may be helpful in conflict resolution. The general pattern is:

Obligation(agent1, role1, action, agent2, role2) Obligation(agent1, role1, reparatoryaction, agent3, role3)

Agreement-based conflicts. An agent may find itself in a conflicting state because it is engaged in multiple contracts. For instance a wholesaler may be obliged to perform two distinct deliveries to two distinct retailers as dictated by two distinct agreements. This situation may be regarded as the generalization of pattern E discussed earlier, because in this case the important information is the distinction between the contracts. The additional information that the two norms stem from two agreements, may be exploited for the purposes of conflict resolution. The general pattern is:

Obligation(contract1, agent1, role1, action1, agent2, role2) Obligation(contract2, agent1, role1, action2, agent3, role3)

where normative propositions of the form NN(contract, agent1, role1, action, agent2, role2) express that according to contract, agent1 that acts as role1 is in legal relation NN towards agent2 that acts as role2 to perform action.

Note that this conflict pattern is different form the one presented in [11]. The key notion here is the different contracts an agent has to comply with. Different contracts may be established towards different agents or even towards the same agent.

Conflicts between assumptions and knowledge. A conflict may arise not only as a result of an agent's explicit knowledge but also between its knowledge and its current assumptions or even between distinct assumptions.

For example, according to the following DfT the prohibition that derives from the second default contradicts not only with obligation that derives from the first default, but also with the assumption of the first default (Permission): W={Order(Agent1, RA, Agent3, WA)}

and $D={}$

Order(Agent1, RA, Agent3, WA): Permission(Agent3, WA, Delivery, Agent1, RA) Obligation(Agent3, WA, Delivery, Agent1, RA) Order(Agent1, RA, Agent3, WA): WellKnownDebtor(Agent1) Prohibition(Agent3, WA, Delivery, Agent1, RA)

3 Conclusions and Future Work

We presented a set of normative conflict patterns that may be encountered in econtracts, and discussed how other analyses of normative conflicts found in the literature of distributed systems, legal reasoning and multiagent interaction may be seen as instances of these patterns. We also identified some conflicts that have not been iden-

tified yet in other proposals.

In [10] we proposed the representation of e-contracts as default theories that can be constructed dynamically from event calculus representations because this affords us the ability to perform temporal reasoning, defeasible reasoning and conflict resolution. As regards the latter in particular, we should note that default logic coupled with priorities can be very expressive. In our previous work [9], we showed how the ascription of priorities to default rules can be done dynamically and consequently how the various strategies for conflict resolution that have been proposed in the literature can be accommodated. Our current work focuses on developing a computational tool based on Reiter's DfL and its major variations, that supports temporal defeasible reasoning as well as conflict detection and resolution as presented in this paper and in [9].

Appendix

We mentioned in section 2.1 that if one accepts Standard Deontic Logic then some of the conflict patterns that we presented are mapped onto others. Here we explain this further, and discuss why we find the adoption of such an axiomatization undesirable.

According to SDL the following inter-definability relations hold among operators for Obligation (o), Permission (P) and Prohibition (F):

It is obligatory that a: OaIt is permitted that a: $Pa = \neg O \neg a$ It is prohibited that a: $Fa = \neg Pa = O \neg a$

In the following table we show the conflict patterns that arise, if one adopts an SDL axiomatization:

Pattern Type	Without SDL	With SDL
Α	(Oa vs ¬Oa)	(Oa vs ¬Oa)
14.3 (6)(50)	or	or.
	(NNa vs ¬NNa)	(NNa vs ¬NNa)
B1	(Fa vs Pa)	(Ob vs $\neg Ob$) if $b \equiv \neg a$ is assumed
B2	(Fa vs Oa)	(Oa vs O¬a) or (Oa vs Ob) if $b = \neg a$ is assumed
С	(Oa vs O¬a)	(Oa vs Ob) if $b = \neg a$ is assumed
D	(PWa vs Fa) ³	- ·
E	(Oa vs Ob)	(Oa vs Ob)
F	(Oa vs ¬Pa)	(Oa vs O¬a) or (Oa vs Ob) if $b \equiv \neg a$ is assumed

Table 1. Conflict patterns with and without SDL axiomatization

³ PWa denotes power to perform the action a

As can be seen from this table, under SDL inter-definability of operators, we may consider that only three primitive conflict patterns arise, i.e. type A, type D and type E.

We noted in section 2 that in the representation of norms as default theories the conflict pattern A never actually arises in an extension, because the derivation of extensions preserves consistency. But, this does not hold for pattern B1, which is possible even as an inter-extension conflict. If we accept the inter-definability of Deontic operators, pattern B1 essentially collapses and becomes pattern A. Hence, B1 will never actually arise in an extension.

Adopting an SDL axiomatization of Deontic operators seems, thus, to lead to some sort of a priori pruning of potential normative conflicts. We find this undesirable, because it seems unrealistic to assume that fewer normative conflicts may arise for agents in a virtual environment, than in real world situations. We prefer, therefore, to maintain a more discriminating representation, which can express more conflict patterns, so that these may be detected and eventually resolved appropriately.

References

- 1. Alan S. Abrahams and Jean M. Bacon. The life and times of identified, situated, and conflicting norms. In *Deontic Logic in Computer Science*, 6th International Workshop on Deontic Logic in Computer Science, pages 3–20, London, England, May 2002.
- Grigoris Antoniou. A tutorial on default logics. ACM Computer Surveys, 31(4):337–359, 1999.
- 3. Jan Broersen, Mehdi Dastani, Joris Hulstijn, Zisheng Huang, and Leendert der van Torre. The BOID architecture: conflicts between beliefs, obligations, intentions and desires. In *Proceedings of the Fifth International Conference on Autonomous Agents*, pages 9–16, Montreal, Canada, 2001. ACM Press.
- 4. Laurence Cholvy and Frederic Cuppens. Solving normative conflicts by merging roles. In *ICAIL '95: Proceedings of the 5th international conference on Artificial intelligence and law*, pages 201–209. ACM Press, 1995.
- Laurence Cholvy and Frederic Cuppens. Reasoning about norms provided by conflicting regulations. In Henry Prakken and Paul McNamara, editors, Norms, Logics and Information Systems. New Studies in Deontic Logic and Computer Science, pages 247–264. IOS Press, Amsterdam, 1998.
- 6. Aspassia Daskalopulu. Modeling legal contracts as processes. In Legal Information Systems Applications, 11th International Workshop on Database and Expert Systems Applications (DEXA'00), pages 1074–1079. IEEE Computer Society, 2000.
- 7. Nicole Dunlop, Jadwiga Indulska, and Kerry Raymond. Dynamic conflict detection in policy-based management systems. In *Proceedings of the Sixth International Enterprise Distributed Oblect Computing Conference*, pages 15–26, Washington, DC, USA, 2002. IEEE Computer Society.
- 8. Nicole Dunlop, Jadwiga Indulska, and Kerry Raymond. Methods for conflict resolution in policy-based management systems. In *Proceedings of the 7th International Conference on Enterprise Distributed Object Computing*, pages 98–111, Washington, DC, USA, 2003. IEEE Computer Society.
- 9. Georgios K. Giannikis and Aspassia Daskalopulu. Defeasible reasoning with e-contracts. In *IEEE/WIC/ACM International Conference on Intelligent Agent Technology*, pages 690–694, Hong Kong, China, 2006. IEEE Computer Society.

- Georgios K. Giannikis and Aspassia Daskalopulu. The representation of e-Contracts as default theories. In H.G. Okuno and M. Ali, editors, *Proceedings of 19th International* Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems, IEA/AIE 2007, LNAI 4570, pages 963–973, Kyoto, Japan, 2007. Springer-Verlag Berlin Heidelberg.
- 11. H. Herrestad and C. Krogh. Deontic logic relativised to bearers and counterparties. In Anniversary Anthology in Computers and Law, Ed. J. Bing. and O. Torrund, pages 453 522, 1995.
- 12. John F. Horty. Moral dilemmas and nonmonotonic logic. *Journal of Philosophical Logic*, 23(1):35–65, 1994.
- 13. John F. Horty. Reasoning with moral conflicts. Nous, 37(4):557-605, 2003.
- 14. Andrew J.I. Jones and Marek J. Sergot. A formal characterisation of institutionalised power. *Journal of the IGPL*, 4(3):427–443, 1996.
- 15. Martin J. Kollingbaum and Timothy J. Norman. Strategies for resolving norm conflict in practical reasoning. In *ECAI Workshop CEAS*, 2004.
- Robert A. Kowalski. A logic-based model for conflict resolution, 2003. http://www.doc.ic.ac.uk/rak/.
- 17. Ronald M. Lee. Bureaucracies as deontic systems. ACM Trans. Inf. Syst., 6(2):87–108, 1988.
- 18. Emil Lupu and Morris Sloman. Conflicts in policy-based distributed systems management. *IEEE Trans. Software Eng.*, 25(6):852–869, 1999.
- 19. David Makinson. On the formal representation of rights relations. *Journal of Philosophical Logic*, 15(4):403-425, 1986.
- 20. Rafaél Hernández Marín and Giovanni Sartor. Time and norms: a formalisation in the event-calculus. In 7th International Conference on Artificial Intelligence and Law. pages 90–99, New York, NY, USA, 1999. ACM Press.
- 21. Jonathan D. Moffett and Morris S. Sloman. Policy conflict analysis in distributed system management. *Journal of Organizational Computing*, 1993.
- 22. Henry Prakken and Marek J. Sergot. Contrary-to-duty obligations. *Studia Logica*, 57(1):91–115, 1996.
- 23. Raymond Reiter. A logic for default reasoning. Artif. Intell., 13(1-2):81-132, 1980.
- 24. Lamber M. M. Royakkers. Extending Deontic Logic for the Formalisation of Legal Rules. Kluwer Academic Publishers, 1998.
- 25. Giovanni Sartor. Normative conflicts in legal reasoning. *Artificial Intelligence and Law*, 1(2-3):209–235, 1992.

Machine Learning

Machine Learning

in the property of the starts and common of the starts of the start of the starts of the starts of the starts of the starts of the start of the starts of the starts of the start of the start

Salasana Ingit Januara of Plantagene al Legic

The State of Telephone (1974) and the state of the state

a sugar an increase for a covery contact that he

and the second of the second o

or received in a relative constant

Colony securities from the solution of the colon

ecological majore, is little at the late of the second second second second second second second second second

Recognition analysis to discuss of a state

Self-assisted obligations

e littetti, 1311-luule 132 See Ma Formalisatti

seems seeming drifficult their commences some